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Summary

Consider an infinitely long, horizontal cylinder of arbitrary cross section, floating on the free surface of an
inviscid, incompressible fluid of infinite depth. The fluid motion is assumed two-dimensional, irrotational and of
small amplitude, and it is described by a wave potential satisfying the Laplace equation, the usual linearized
free-surface and body-boundary conditions, as well as proper conditions at infinity. A general multipole
expansion for the wave potential is derived, converging throughout the fluid domain. Conditions are also stated
under which the corresponding expansion for the fluid velocity converges up to and on the body boundary. In
this case the multipole expansion may be used in the numerical solution or in the theoretical study of various
water-wave problems.

To obtain the expansion, a decomposition of the wave potential in a regular wave, a wave source, a wave
dipole and a regular wave-free part is first invoked. Subsequently, using Texeira’s series and the conformal
mapping between the semicircular region [{| > 1, Im ¢ < 0, and the fluid domain, it is shown that the regular part
of the wave potential can be represented by a convergent series of wave-free multipoles, which are given
explicitly in terms of the mapping function.

1. Introduction

Consider an infinitely long, horizontal cylinder floating on the free surface of an inviscid,
incompressible fluid under gravity. The fluid is assumed infinitely deep and its motion
time-harmonic, two-dimensional, irrotational and of small amplitude. Then, the fluid
motion can be described by a velocity potential, called also a wave potential, satisfying a
linearized boundary-value problem. Such problems have been treated by many authors
using several different methods: boundary-integral equations, multipole expansions, varia-
tional principles, hybrid methods (see Wehausen [1,2], Euvrard et al. [3], Mei [4), Euvrard
[5] for pertinent surveys). Besides, modern treatments using functional-analytic techniques
have recently appeared (see, e.g., Beale [6] and Lenoir [7]).

The method of multipole expansion was initiated by Ursell in 1949, [8,9], and has been
widely used thenceforth in the study of various water-wave problems. A rigorous justifi-
cation of the form that the expansion takes in the case of a semicircular boundary, has
been given by Ursell [10]. His arguments were closely related to those developed
previously by himself in connection with a uniqueness theorem for the wave potential
around a fixed submerged circular cylinder [11]. The corresponding expansion for noncir-
cular boundaries with a vertical axis of symmetry has been given by Ursell [9] and used
extensively in the study of radiation problems. In spite of its long-standing and successful
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use, this expansion is still lacking a rigorous justification, analogous to that given by
Ursell for a semicircular boundary.

In the present study a multipole expansion is established for the wave potential outside
a floating cylinder of arbitrary cross section. This expansion is used by Athanassoulis [12]
to study the existence and uniqueness questions for the radiation problem. Furthermore, it
may be used to obtain numerical solutions for the radiation and diffraction problems. In
fact, very satisfactory results have recently been obtained for all three rigid modes of
motion (sway, heave, roll) of several nonsymmetric bodies (see Lyberopoulos [27] and
Lyberopoulos, Athanassoulis and Loukakis [28]).

To obtain the multipole expansion we use the fact that any wave potential may be
decomposed into a regular wave, a wave source, a wave dipole and a regular wave-free
part. Such a decomposition has been proved by Ursell [10,11] under slightly different
circumstances but the proof can be easily extended to the present case by similar
reasoning; see Athanassoulis [13]. Subsequently, an expansion of the regular wave-free
part in terms of simple wave-free multipoles is obtained with the aid of Texeira’s series
and the conformal mapping of the semicircular region || > 1, Im { <0, onto the fluid
domain. The corresponding mapping function always exists and, for a wide class of body
boundaries, has a reasonable boundary behaviour, ensuring the validity of the expansion
up to and including the boundary; see Appendix II. However, from the computational
point of view, the construction of this mapping function may be a difficult problem for
complicated boundaries.

The author is aware of only one pertinent work (Wehausen [2]) concerned with the
multipole expansion of the wave potential outside floating cylinders of arbitrary cross
section. The relation between the present and Wehausen’s work will be discussed in Sec. 4.

2. Formulation of the problem and decomposition of the wave potential

A Cartesian coordinate system Ox,x, is introduced with Ox, on the mean free surface,
Ox, directed vertically upwards, and the origin O inside the floating body (Fig. 1). A point
in the (x,, x;)-plane is represented by x = (x,, x3) or w = x, + ix;, in complex notation.
The mean fluid domain D is considered topologically open, i.e. it does not contain its
boundary points. The mean positions of the rigid boundary and the free surface are
denoted by 3Dy and 9Dy, respectively. A cross in the upper right side of a pointset symbol
denotes the symmetric pointset with respect to the x,-axis. Accordingly, D* and 9Dj
denote the symmetric images of D and 3Dy, respectively. Furthermore we define

D*=DUD*UdD, and 0D§=48DzUdDg,
where U denotes set-theoretic union. D* is topologically open and does not contain the
point at infinity.
We also introduce the infinite boundaries 9D, and 9D; with the following meaning:

x€dD_(3D2) means |x]— oo and x, < 0(x;>0).

It should be emphasized that 9D, and 3D} cannot be identified with the point at infinity,
since |x| is taken to approach infinity, x lying in the lower (upper) half-plane only. On the
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C-plane W-plane

Figure 1. Geometrical description.

contrary, the infinite boundary dD* of the domain D*, defined by D} = 39D, U 0D, is
actually the point at infinity.

We assume that the body boundary 9Dy, performs small-amplitude time-harmonic
oscillations with frequency w and normal velocity U, (x, ¢) = u, (x) cos wt — u (x) sin w?,
x € 3Dy Introducing the imaginary unit j = v —1, we can write the normal velocity in the
form

U,(x,1)=Re{u,(x) e}, x€dDy,

where u_(x)=u, (x)+jun(x) is its j-complex amplitude. "’ Then, the fluid motion is
described by a velocity potential

®(x,1)=Re;{p(x) e},
where ¢(x), the j-complex amplitude of ®(x, ¢), satisfies the Laplace equation

¢,2(x)+6,53(x)=0, x€D, (2.1)

and the boundary conditions

kop(x)—,,(x)=0, k,=w?/g, x€0Dy, (2.2)
a—¢a—(5—)=un(x), x €Dy, (2.3)

@ Two sets of functionally different complex numbers will be used in the present work. The set C j» of j-complex
numbers, and the set C;, of i-complex numbers. Formal products of i- and j-complex numbers also occur,
leading to the new set of ij-complex numbers. The algebraic and topological structure of the latter is
developed in Appendix I.
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and
'(f),[(X)I_‘)O, l=2a3a X3_‘) — 00. (2'4)

Here n=(n,, n,) is the unit normal on 0Dy directed outwards with respect to the fluid,
and 9 /0n denotes differentiation along that normal.

A condition at 9D, is usually added to the above equations. In the case of radiation
problems this is the well-known radiation condition, stating that at 9.D_ the fluid motion
is represented by simple progressive waves, traveling outwards to infinity. In the case of
diffraction problems a regular wave component, the incident wave, should be subtracted
from the total wave potential, before the radiation condition is applied (John [14]).
Nevertheless, in the present work we shall proceed in a different way. We shall seek all
possible solutions for the wave potential, which are of slow (polynomial) growth at 3D
(cf. Ursell [10]):

N =23, M>0,
I,/ (x)] < M|x|", N>0, xeaD,. (2.5)

Condition (2.5), though weaker than the more natural boundedness condition, i.e. |$,,(x)|
<M, x € 3D, eventually leads to the same general form for ¢(x).

Equations (2.1) to (2.5) define the water-wave problem that is to be studied in the
present work.

We now introduce the ij-complex wave potential

F(w)=¢(x)+iy(x), (2.6)

where ¢(x) and {(x) are the j-complex amplitudes of the velocity potential and the
corresponding stream function, respectively. Equations (2.1) to (2.5) are then transformed
into the following:

F(w) is i-analytic, we D, 2.7
F

Imi{dd(ww)+ik0F(w)}=0, weaD,, (2.8)

F

Rei{n(w)dd—(ww)}=un(w), w e 3Dy, (2.9)

dF(w)

|—dW—Cij——>O, X3 — o0, (2.10)

idF(W)I <Mw|¥, M>0, N>0, wedD_, (2.11)

dw C;

respectively. Here |- lc, is the absolute value of ij-complex numbers (see Appendix I) and
n(w)= n, + in, is the unit normal on 9Dy considered as an i-complex number.

Equations (2.7) to (2.11) constitute an alternative formulation of the examined water-
wave problem. This formulation is particularly suitable for the study of our problem in the
context of analytic-function theory.
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Using the well-known reduction method and proceeding along lines due to Ursell [10],
[11], we arrive at

THE DECOMPOSITION THEOREM (Athanassoulis [13]): Any function F(w) satisfying the
conditions (2.7), (2.8), (2.10) and (2.11) can be decomposed in the form

F(w)=Be %"+ 8 F(w)+S,F(w)+8(w), weD, (2.12)
where B C.

ii» S1» S2 € C; (see Appendix 1 for the definition of Cy); Fi(w), Fy(w) are wave
singularities at the origin defined by

Fm(w)=e_”‘°”f u e ody, m=1,2, weD; (2.13)

oo + 10

8(w) is an ij-complex function regular in D} = D* U {0}, satisfying the free-surface
condition

Imi{ﬂiz(wl)ﬂkoa(w)}=o, w € dDg. (2.14)

That is, any wave potential F(w) can be expressed as the sum of a regular wave, a wave
source, a wave dipole, and a wave-free part regular throughout D¥. @

ReMARK: The use of Fi(w) and E,(w) is not obligatory for the decomposition (2.12).
Higher-order singularities, defined by (2.13) with m > 2, may also be used. Actually, what
is needed is a pair of odd- and even-order wave singularities.

3. The multipole expansion of the wave potential

To obtain the multipole expansion of the wave potential an explicit representation is
needed for the regular wave-free function #(w), appearing in (2.12). Since the domain of
regularity D* of this function is not annular, an ordinary Laurent series in the w-plane
cannot be used to represent it throughout D*. Nevertheless, one may always use a Texeira
series representation (see, e.g., Whittaker and Watson [15], §7.31 or Sansone and Gerret-
sen [16], §3.13) of the form

ow)= ¥ b,(50w) " (3.1)

where g(w) is the function mapping conformally D* onto the exterior of the unit circle.
This representation, although completely general, is not convenient for our purpose, since
the restrictions induced on b,’s by the free-surface condition (2.14) cannot be obtained in
a simple manner. This difficulty may be, however, surmounted by making the change of
variable w = f({), where f({) is the function mapping conformally the exterior of the unit
circle in the {-plane onto the domain D* in the w-plane, i.e. the inverse function of g(w).

@ The usual wave source and wave dipole can be easily obtained by linear combinations of Fi(w) and Fy(w).
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The function f({) is represented by a Laurent series of the form
o]
f)=Y e, ¢eRr, [>1, (3.2)
=1

converging uniformly and absolutely in any compact subregion of |{| > 1. Furthermore,
under additional conditions, the series (3.2) converges uniformly and absolutely on any
region {{; 1 <|{|< R}, R > 1. These conditions, as well as other useful properties of the
mapping function f({), are reported in Appendix II.

Let us now introduce the notation in the {-plane (the transformed plane). A point in it
is represented by ¢ = £, + i;, £,, £, € R. The domains X, K* and K *, corresponding to
D, D" and D*, respectively (Fig. 1), are defined by

K(K*)={81<[f|<00,8,<0(£,>0)}, K*=KUK"UKq,
where
0K = {§;1§,1> 1, £, =0},

is the inverse image of the free surface 9Dy. The boundaries 3Ky, 3K; and 3KX,
corresponding to 3Dy, dD; and 3D}, respectively, are defined by

3Kg(0K5) = (& 181=1,4,<0(¢;20)}, 9K} =09KzU0Kjg.
Finally, the symbol K * is used to denote the domain K * including the point at infinity,
ie. KX*=K*U{0}.

Introducing the change of variable w=f({), {=g(w), into (3.1) we obtain the
following lemma, which is of essential importance for our further considerations.

LEMMA 1: Any function 8(w) that is regular in D} and satisfies the condition (2.14) may be
represented in the form

0(w)=6,(g(w)), (3.3)

where the function 0,({) is regular in K* and satisfies the condition

SYECLIE

5 ik L al(g)}=0, e K, (3.4)

Lemma 1 reduces the representation of the regular wave-free potential (w) to the
representation of a function 6,({), regular in the annular domain K% and satisfying the
modified free-surface condition (3.4). Let us now find the general form of such a function.
At first, we have

#,(¢)= Y BL™", B,eC,, (€K}, (3.5)
n=1

(B, =0,(c0)=0(0)=0). The serics (3.5) converges uniformly and absolutely in any
compact subregion of the annulus X ™.
Using now the expansions (3.2) and (3.5) we find



a+ik df(g)}iB"g "

o0 n+1
=ik, GBS+ ) {—nB,,+ik0 Y (2—1)C,B,,+2_,}§‘<"+‘>.
/=1

n=1
Substituting (3.6) into (3.4) and setting
B =B +iB’, B.,B’c CJ-,

we obtain

o0 n+1
kOCIB;£;1+ Z {_”B:'"ko Z (2“'1)CIB;+2—/} 2_("+1)=09 1§,1> 1,

n=1 =1

which implies

n+1
B/ =0, nB'=kyY (2—1)C,B,,,_,, n=1,2,3,....
=1

Inserting the latter relations into the general expansion (3.5) we deduce

w0 n+1
o(g)_ng +ike Y Y (2-1), Brsa- ’g "
n=1 [=1
=8,(¢) +ikyS,(¢).
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(3.6)

(3.7)

(3.8)

The double series S,({) will be now rearranged in a manner revealing the connection of
8,(¢) with the usual wave-free multipoles for symmetric bodies as well as with the

generalized multipoles given by Wehausen [2]:

dS w n+1
__;_(f_)z - Z Z (2—1)CIB,:+2—/§_(HH)
§ n=11=1

”§_1 Z Z (2 _I)CIB;+1—I§1A"

n=21=1

(2=1)C,BL "

i
|
M3

M3

21/

]
—

Integrating term-by-term and using
S,(00) = 6,(o0) =0,

we find

s()=- % 5 CDGEE T
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Upon substituting the above equation into (3.8) we obtain

6,()= Y d,M,(). (K2, (3.9)

n=2
where d,, = B] are j-complex constants, and

2 — I)C[§2—I—n

M"(§)=§_"—ikoz —(ﬁ’ n=2,3,... (3.10)
=1

The functions M, ({) satisfying the free-surface condition and vanishing at infinity, are
the generalized wave-free multipoles. These multipoles are identical with those derived by
Wehausen ([2], p. 110), although the final expansion for F(w) obtained there, is not the
same as the expansion derived in the present work (see Sec. 4).

When Ox, is a vertical axis of symmetry of 3Dy, then C,,=0,/=0, 1, 2,..., and the
subsequences

_ ) "] (3__21)C21~1§3—2I—2n
— 2n _
My, (§)=¢ ‘kOEI 3—2/—2n

and

3 — 21)C2,_1§2_2I_2”
2-2]-2n

M2n+1(§) = §_(2”+1)_ik0 Z (
=1

of the generalized wave-free multipoles coincide with the usual symmetric and antisym-
metric wave-free multipoles, respectively.

Using the representation (3.9), in conjunction with the decomposition theorem, we
arrive at

THE EXPANSION THEOREM: Suppose that the function F(w) satisfies the conditions (2.7),
(2.8), (2.10) and (2.11). Then, it may be expanded in the form

F(w)=Be "+ 8§ F(w)+S8,F(w)+ dM/({), weD, (3.11)
111 2472
n=2

where B, S,, S,, Fi(w) and F,(w) are defined as in the decomposition theorem, d, are
Jj-complex constants, M, ({) are the wave-free multipoles defined by (3.10), { = g(w) = f~"(w),
and (%) is the function mapping conformally K* onto D*.

The series in (3.11) converges uniformly and absolutely in any compact subregion of
K * and may be differentiated term-by-term any number of times there.

The asymptotic form of the wave potential at 0D, may be now easily obtained. From
(3.11) it follows that F(w) can be written in the form

F(w)=F_(w)+ Fy(w), (3.12)
where

F (w)=B*e i** B*eCy, weD, x,—> oo, (3.13)



189

B*=B, B~ =B 2niS, +21k,S,, (3.14)
and
A, A,
[Fr(w)lc, < | Fr(W)le, < , Ay, A;>0, weD. (3.15)
v x| v x5

From (3.13) it is found, by straightforward algebraic manipulations, that the j-complex
amplitude ¢(x) of the wave potential has the following asymptotic form at 3D, :

¢(x)=9,(x) +¢g(x), x€D, (3.16)
— B akoxs[ gt amithoxa+82) 4 pt ailkex+82)
qbw(x)—we 3{hﬂe 0%z +hE elthon }, X, > +o00, (3.17)
A A
lpr(x)|<—== and |¢x(x)|<-—%, x€D. (3.18)
E2Y |
In the equation (3.17), k%, hZ are four positive constants representing the amplitudes of

four simple progressive waves at 3D, and 8%, 8% are four real constants expressing the
phase lags between these waves *. (Actually one of these constants is redundant but we
shall not dwell on this point here.) The eight aforementioned constants are expressed in
terms of B* = Bz +jBa; + 1B + 1B by means of relations

1/2 Bi + B3
ht=—"{(Bia—Bt) +(Ba+B%)) , tanst=—RL_IR (3.19a)
2g{( RR 11) ( RI IR)} B — B,
w 2 2y1/2 Bx,— B
ht=—"{((Bt +B:) +(B% - B3 , tandt=—1—-F (3.19b)
2g R R

+ +
Bjj + Bar

On the basis of (3.17), it is deduced that at either x, = + 00 or x, = — oo, the wave
potential may behave as: (1) a simple progressive outgoing wave, or (il) a simple
progressive incoming wave, and/or (iii) a simple stationary wave (cf. Newman [17] and
Guével et al. [18]). In this connection it is worthwhile to notice that the a priori use of a
radiation condition eliminates the possibilities (i) and (iii).

Let us now examine more closely the form the expansion takes in the special case of a
radiation problem, which is characterized by

hi=h_=0. (3.20)
In virtue of (3.19) it is easily seen that (3.20) is equivalent to
B*=A*(1F1), A*ecC,, (3.21)
from which, in conjunction with (3.14), we find

—i(At+ A" A" A*
_TiATHAT) o AT -AT (3.22)

CoA(]
B=A"(1-1), S 27 2 27k,

* The arrows in #’s and 8’s indicate the direction of the waves.
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The expansion (3.11) takes then the form

F(w) = A*G*(w)+ A-G-(w) + ¥ d. M, (¢), (3.23)

where A* and d, are j-complex constants and
) = (1 — i3} a—ikow _ I 1
GT(w)=Q1-ije > Fi(w) zkaFz(W), (3.24a)

G—(w)=2;;Fl(w)+2%kOF2(w). (3.24b)

The coefficients A* and d, in the expansion (3.23) have to be determined through the
body boundary condition (2.9). It is convenient to rewrite this condition in terms of the
transformed variable ¢{:

Rei{_gdL(Q&

=u (0), ¢{=¢? —w<0<0, 3.
Idf(f)/dﬂ} u(0), §=e —m<b< (3.25)

where F (§_’ ) and u,,(8) stand for F(f({)) and u_( f(e'?)), respectively. It should be noted
that df(e'?)/d¢ exists and is different from zero provided that 0D} is of class €2 (see
Appendix II). Substituting (3.23) into (3.25) and differentiating term-by-term we obtain

Re;

ATHY(§) +ATH () + X ndn{f‘"*“i% ) (z—:)c,rz"‘"}}
=1

n=2 ¢=ci®

—V(8), -w<6<0, (3.26)

where H*($)= —{dGE(f({))/d¢ and V(8)=u (8)[df(e'?)/d¢|. The termwise differ-
entiation is justified if

Yi2-1)Cj<+00 and Y |nd,|< + . (3.27a,b)

Relation (3.27a) is actually a smoothness condition on the body boundary; it is certainly
satisfied when 9D} is of class 2. Relation (3.27b), which is, in fact, a smoothness
condition on the wave potential, may be assumed a priori, provided that it will be checked
a posteriori, when the solution of the problem will have been accomplished (cf. Ursell [19]
and Athanassoulis [12]).

However, if the left-hand side of (3.26) is interpreted in a limiting sense, as [{| = 11,
condition (3.27b) may be replaced by the weaker one

2lnd,|> < + oo, (3.27¢)

which ensures the L?-convergence of the infinite series in (3.26). This viewpoint has been
adopted by the author in [12]. :
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4. Discussion

The derived multipole expansion may be useful either in the theoretical or in the
numerical study of water-wave radiation and diffraction problems.

The expansion theorem appears to be new in its general form. It is an extension of the
corresponding theorem proved by Ursell [10] for fluid regions exterior to a semicircle.

The only previous work known to the author dealing with the application of the
multipole expansion method for two-dimensional floating bodies of arbitrary shape is the
one by Wehausen [2]. Wehausen has worked in the transformed plane from the outset,
taking firstly a representation of the wave potential in terms of an infinite series of wave
multipoles (Eqn. 5.44, p. 107). Then, by rearranging this series, he has ended in an
expansion (Eqn. 5.57, p. 112) similar to the present one (3.11). However, the second-order
wave singularity and the first wave-free multipole are not included in Wehausen’s
expansion. This discrepancy may be attributed to the rearrangement of the wave-multi-
poles infinite series.
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Appendix I

The algebraic and topological structure of ij-complex numbers

As we saw in Sec. 2, it is convenient to formulate our problem with the aid of two
non-interacting imaginary units i and j. The need of using two imaginary units is due to
the fact that water-wave problems are dynamical problems in which the field equation is
the one of Laplace. So, an imaginary unit j is used to simplify the time-dependence (in the
time-harmonic case) while, at the same time, another imaginary unit i is introduced to
transform the (x,, x,)-plane into a complex plane, and pairs of real harmonic functions
into single complex analytic functions. Such a formalism has been introduced in the
context of water-wave problems many years ago (see Wehausen and Laitone [20], §11, 19,
21) and has been used may times thenceforward.

The simultaneous presence of the two imaginary units i and j leads to a new kind of
numbers, called ij-complex numbers, the set of which is denoted by C;. In the present
appendix we shall develop in a fairly complete manner the algebraic and topological
structure of the set C;;. Incidentally, a comparison with the superficially similar hypercom-
plex numbers (Hamilton’s quaternions) will be made.

An element 4 € C; may be represented by anyone of the following three forms:

A=a+iB+jy+id; i=ji; a B,v,0€R, (11)
A=a+ib; a,beC, (1.2)
A=z+jw; z,weC,. (1.3)

The representations (I.1), (1.2) and (1.3) are superficially identical with the representa-
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tions of quaternions (see, e.g., MacLane and Birkhoff [21}, p. 253, and Kostrikin [22], p.
426). The algebraic structure of C; is, however, essentially different from that of
quaternions, because of the different definition of multiplication.

The following four projection operators may be naturally introduced:

Re,d=aeC;, ImA4=beC,
Red=z€C;, ImA=weC,.

Let us now define the basic notions and operations in C;, using the representation
(I.3). Let A=z +jw, A, =z, +jw,, k=1, 2, be in C;;. Then, we define
Equality: A4,=A4,<z,=2, and w;=w,;
Addition: A, +A4,=(z; +2z,)+j(w; +wy); (1.4)
Zero element: 0 .= 0+ j0;
Multiplication: A4, - A, = (2,2, — wyw,) +j(z,w; + z,w;); (L5)
Unit element: lcij =1+j0;
Scalar multiplication: A4 =(Az)+j(Aw), AeC; (1.6)
Absolute value:  [Alc, = (|z|* + |w|*)'/2. (1.7)

The law of multiplication (1.5) is different from the law of multiplication of quatern-
ions. In fact, if Q, =z, +jw,, k=1, 2, are two quaternions, their product is defined by

0,-0,= (2122 - WIWZ) +j(51W2 + ZZWI)‘

The consequences of this difference will be discussed in the sequel.

It is easy to see that the set C; equipped with the operations of addition (I.4) and
multiplication (1.5) becomes a commutative ring. This commutative ring does not, how-
ever, possess the structure of a field, since there exist nonzero elements of it which do not
have multiplicative inverses. With regard to this point we state the following two
propositions.

PROPOSITION 1: The multiplicative inverse of the ij-complex number A = z + jw exists and is
uniquely defined by

QL ——
22+ w? !

22+ w? )’
provided that z* + w? # 0. The set J of noninvertible elements has the form
J={B;B=(xi+j)w,weC,;}

and forms a proper ideal in C ;.

PROPOSITION 2: The numbers A, =(£i+jw, A, =(Fi+jw, wE C,, are zero divisors in
C., i.e. their product equals to zero though both being different from zero.

ij?
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We can now explain the essential algebraic difference between the ij-complex numbers
and the quaternions. The former constitute a commutative ring in which there exist
nonzero, noninvertible elements and zero divisors; the latter form a noncommutative ring
in which all nonzero elements are invertible.

The existence of noninvertible ij-complex numbers does not affect our treatment in the
present work, since it is not needed to divide by a general ij-complex number.

The set C; equipped with the operations of addition, multiplication and scalar
multiplication, and with the norm (1.7), becomes a commutative Banach algebra over the
field of i-complex numbers. Various algebraic and topological consequences of this fact
can be found in standard treatises on the subject, e.g. in the book by Gaal [23].

Appendix 11
On the mapping function f(§)

In this appendix we collect, in the form of a theorem, all properties of the mapping
function f({) which have been used in the present work.

THEOREM: Let the boundary dD} be a rectifiable closed Jordan curve, i.e. a simple,
continuous, closed curve with finite length. Then the following statements are true:

(i) There exists a function (), analytic in K* and with a simple pole at infinity, mapping
conformally the domain K* onto the domain D*. (This is a special case of the Riemann
mapping theorem).

(ii) Under the additional condition df(o0)/d$ > 0, f(§) is uniquely determined.

(iit) The function f({) can be extended onto the boundary 0K}, establishing a one-to-one
and bicontinuous correspondence between the points of 0K ¥ and 0D} (Osgood-Caratheodory’s
theorem).

(iv) The function f({) has a Laurent expansion

f($)= Z ct*!, ¢, >0,
=1

which converges absolutely and uniformly on the set KU 38K y. Moreover,
YIC| < + .

If 0D} is symmetric with respect to the real axis, all C,’s are real.

Suppose, in addition, that dD}¥ is of class €7, i.e. it is smooth and its tangent vector is
continuously differentiable. Then also the following holds:

(v) The mapping function f({) can be extended as a differentiable function onto the
boundary 0K ). Moreover, its derivative df({)/d{ does not vanish on 0K} (Kellogg’s
theorem), and the coefficients C, satisfy the relation

Yi2-1cC|< + .

The proofs of the propositions collected in the above theorem may be found in various
treatises concerning the theory of complex functions and conformal mapping. See, e.g.,
Markushevich [24], ch. 1 and 2, Hille [25], ch. 17, and Tsuji [26], ch. IX, §3, for the proof
of Kellogg’s theorem.
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