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Summary  

Consider an infinitely long, horizontal cylinder of arbitrary cross section, floating on the free surface of an 
inviscid, incompressible fluid of infinite depth. The fluid motion is assumed two-dimensional, irrotational and of 
small amplitude, and it is described by a wave potential satisfying the Laplace equation, the usual linearized 
free-surface and body-boundary conditions, as well as proper conditions at infinity. A general multipole 
expansion for the wave potential is derived, converging throughout the fluid domain. Conditions are also stated 
under which the corresponding expansion for the fluid velocity converges up to and on the body boundary. In 
this case the multipole expansion may be used in the numerical solution or in the theoretical study of various 
water-wave problems. 

To obtain the expansion, a decomposition of the wave potential in a regular wave, a wave source, a wave 
dipole and a regular wave-free part is first invoked. Subsequently, using Texeira's series and the conformal 
mapping between the semicircular region I~1 >~ 1, Im ~" ~< 0, and the fluid domain, it is shown that the regular part 
of the wave potential can be represented by a convergent series of wave-free multipoles, which are given 
explicitly in terms of the mapping function. 

1. Introduction 

Cons ide r  an  inf ini te ly  long, hor izonta l  cy l inder  f loat ing on the free surface of  an inviscid,  

incompress ib le  f luid under  gravity.  The  fluid is assumed inf ini te ly  deep and its mot ion  
t ime-harmonic ,  two-d imens iona l ,  i r ro ta t iona l  and  of  small  ampl i tude .  Then,  the fluid 

mo t ion  can be descr ibed  by  a veloci ty potent ia l ,  cal led also a wave potent ia l ,  sat isfying a 
l inear ized bounda ry -va lue  problem.  Such p rob lems  have been  t rea ted  by  m a n y  authors  
us ing several  d i f ferent  methods :  boundary - in teg ra l  equat ions,  mul t ipo le  expansions,  var ia-  
t ional  principles ,  hybr id  me thods  (see Wehausen  [1,2], Euvra rd  et al. [3], Mei  [4], Euvra rd  
[5] for  pe r t inen t  surveys). Besides, m o d e m  t rea tments  using func t iona l -ana ly t ic  techniques 
have recent ly  a p p e a r e d  (see, e.g., Beale [6] and  Lenoi r  [7]). 

The  me thod  of mul t ipo le  expans ion  was in i t ia ted  by  Ursel l  in 1949, [8,9], and  has been  
widely  used thencefor th  in the s tudy  of  var ious  water-wave problems,  A r igorous  just i f i -  
ca t ion  of  the form that  the expans ion  takes in the case of  a semicircular  boundary ,  has 
been  given b y  Ursel l  [10]. His  a rguments  were closely re la ted  to those deve loped  
previous ly  by  himself  in connec t ion  with  a uniqueness  theorem for the wave poten t ia l  
a r o u n d  a f ixed submerged  circular  cy l inder  [11]. The  co r respond ing  expans ion  for nonci r -  
cu lar  boundar i e s  wi th  a vert ical  axis of symmet ry  has been  given by  Ursel l  [9] and  used 
extensively in the s tudy of  rad ia t ion  problems.  In spite of  its long-s tanding  and  successful 
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use, this expansion is still lacking a rigorous justification, analogous to that given by 
Ursell for a semicircular boundary. 

In the present study a multipole expansion is established for the wave potential outside 
a floating cylinder of arbitrary cross section. This expansion is used by Athanassoulis [12] 
to study the existence and uniqueness questions for the radiation problem. Furthermore, it 
may be used to obtain numerical solutions for the radiation and diffraction problems. In 
fact, very satisfactory results have recently been obtained for all three rigid modes of 
motion (sway, heave, roll) of several nonsymmetric bodies (see Lyberopoulos [27] and 
Lyberopoulos, Athanassoulis and Loukakis [28]). 

To obtain the multipole expansion we use the fact that any wave potential may be 
decomposed into a regular wave, a wave source, a wave dipole and a regular wave-free 
part. Such a decomposition has been proved by Ursell [10,11] under slightly different 
circumstances but the proof can be easily extended to the present case by similar 
reasoning; see Athanassoulis [13]. Subsequently, an expansion of the regular wave-free 
part in terms of simple wave-free multipoles is obtained with the aid of Texeira's series 
and the conformal mapping of the semicircular region [~l >~ 1, Im ~ ~< 0, onto the fluid 
domain. The corresponding mapping function always exists and, for a wide class of body 
boundaries, has a reasonable boundary behaviour, ensuring the validity of the expansion 
up to and including the boundary; see Appendix II. However, from the computational 
point of view, the construction of this mapping function may be a difficult problem for 
complicated boundaries. 

The author is aware of only one pertinent work (Wehausen [2]) concerned with the 
multipole expansion of the wave potential outside floating cylinders of arbitrary cross 
section. The relation between the present and Wehausen's work will be discussed in Sec. 4. 

2. Formulation of the problem and decomposition of the wave potential 

A Cartesian coordinate system Ox2x 3 is introduced with O X  2 o n  the mean free surface, 
Ox 3 directed vertically upwards, and the origin O inside the floating body (Fig. 1). A point 
in the (x 2, x3)-plane is represented by x = (x 2, x3) or w = x 2 + ix 3, in complex notation. 
The mean fluid domain D is considered topologically open, i.e. it does not contain its 
boundary points. The mean positions of the rigid boundary and the free surface are 
denoted by 0D B and aD F, respectively. A cross in the upper right side of a pointset symbol 
denotes the symmetric pointset with respect to the x2-axis. Accordingly, D ÷ and 0D~- 
denote the symmetric images of D and 0D B, respectively. Furthermore we define 

D * = D U D + U a D v  and 3D~=ODBUOD ~, 

where U denotes set-theoretic union. D* is topologically open and does not contain the 
point at infinity. 

We also introduce the infinite boundaries 0Doo and 0D~ with the following meaning: 

x ~ ODoo(OD~) means Ix[ ~ oo and x 3 ~< O(x 3 >/0). 

It should be emphasized that aDoo and OD + cannot be identified with the point at infinity, 
since Ixl is taken to approach infinity, x lying in the lower (upper) half-plane only. On the 
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Figure 1. Geometrical description. 

contrary, the infinite boundary OD* of the domain D*, defined by OD* = OD~ U OD~ + , is 
actually the point at infinity. 

We assume that the body boundary aD B performs small-amplitude time-harmonic 
oscillations with frequency ~0 and normal velocity U.(x, t) = u.c(x)  cos ~0t - Uns(X ) sin 0~t, 
x ~ OD B. Introducing the imaginary unit j = fS_ 1, we can write the normal velocity in the 
form 

U n ( X , t ) = R e j { U n ( X ) e P ° t } ,  x E ~ D  B, 

where u . ( x ) =  U.c(x)+jUns(X ) is its j-complex amplitude. (a) Then, the fluid motion is 
described by a velocity potential 

dp(x, t)  = Rej{ q,(x) eJ'°' }, 

where ~(x) ,  the j-complex amplitude of ~b(x, t), satisfies the Laplace equation 

dr), 22 (X)-I'-1]1,33 ( X ) =  0 , x ~ D ,  (2.1) 

and the boundary conditions 

ko,(X )-~,3(x) = 0,  k 0 = £d2/g ,  x E ~ D F ,  ( 2 . 2 )  

0 ~ ( X )  i U n ( X ) ,  X E 0 D B ,  ( 2 . 3 )  
an 

(1) Two sets of functionally different complex numbers will be used in the present work. The set C j, of j-complex 
numbers, and the set C i, of i-complex numbers. Formal products of i- and j-complex numbers also occur, 
leading to the new set of ij-complex numbers. The algebraic and topological structure of the latter is 
developed in Appendix I. 
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and 

I q , , z ( x ) l ~ 0 ,  •=2 ,3 ,  x 3 ~ - ~ .  (2.4) 

Here n = (n 2, n3) is the unit normal on 0D a directed outwards with respect to the fluid, 
and O/On denotes differentiation along that normal. 

A condition at OD~ is usually added to the above equations. In the case of radiation 
problems this is the well-known radiation condition, stating that at 0D~ the fluid motion 
is represented by simple progressive waves, traveling outwards to infinity. In the case of 
diffraction problems a regular wave component, the incident wave, should be subtracted 
from the total wave potential, before the radiation condition is applied (John [14]). 
Nevertheless, in the present work we shall proceed in a different way. We shall seek all 
possible solutions for the wave potential, which are of slow (polynomial) growth at 0D~ 
(cf. Ursell [10]): 

iq,,,(x)l<Mlxl N, •=2,3, M > 0 ,  (2.5) 
N>~O, x~OD~. 

Condition (2.5), though weaker than the more natural boundedness condition, i.e. I q~, l(x)l  
< M, x ~ 0D~, eventually leads to the same general form for q,(x). 

Equations (2.1) to (2.5) define the water-wave problem that is to be studied in the 
present work. 

We now introduce the ij-complex wave potential 

F(w)=eO(x) + i~b(x), (2.6) 

where q,(x) and + (x )  are the j-complex amplitudes of the velocity potential and the 
corresponding stream function, respectively. Equations (2.1) to (2.5) are then transformed 
into the following: 

F(w) is i-analytic, w ~ D, (2.7) 

d F ( w )  ) 
Im i d-----------~--+ikoF(w) = 0 ,  w~ODF, (2.8) 

d F ( w )  
Rei(n(w)~~-w )=Un(W), w~OD,, (2.9) 

d F ( w )  
I - ~ - - w  Ic.; ~ 0, x 3 ~ - ~ ,  (2.10) 

d F ( w )  I~Ic,<MIwlN, M > 0 ,  N>~O, w~OD~, (2.11) 

respectively. Here I" I% is the absolute value of ij-complex numbers (see Appendix I) and 
n(w) = n 2 + in 3 is the'unit normal on 0D B considered as an i-complex number. 

Equations (2.7) to (2.11) constitute an alternative formulation of the examined water- 
wave problem. This formulation is particularly suitable for the study of our problem in the 
context of analytic-function theory. 
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Using the well-known reduction method and proceeding along lines due to Ursell [10], 
[11], we arrive at 

THE DECOMPOSITION THEOREM (Athanassoulis [13]): Any function F(w) satisfying the 
conditions (2.7), (2.8), (2.10) and (2.11) can be decomposed in the form 

F ( w ) = B e - i k ° ' +  S , F , ( w ) + S 2 F 2 ( w ) + O ( w ) ,  w ~ D ,  (2.12) 

where B ~ Cij , $1, S 2 ~ Cj (see Appendix I for the definition of C ij); Fl(w), Fz(w ) are wave 
singularities at the origin defined by 

f w  . Fm(w ) = e -ik°w u - "  e'k°Udu, m = 1, 2, w ~ D; (2.13) 
"~ c~  + i 0  

O(w) is an ij-complex function regular in D* = D ' t _ ) ( ~ ) ,  satisfying the free-surface 
condition 

Iml dw ~iko0(W) =0, w~0DF. (2.14) 

That is, any wave potential F(w)  can be expressed as the sum of a regular wave, a wave 
source, a wave dipole, and a wave-free part regular throughout D*. (2~ 

I~MAPd~: The use of Fl(w ) and F2(w ) is not obligatory for the decomposition (2.12). 
Higher-order singularities, defined by (2.13) with m > 2, may also be used. Actually, what 
is needed is a pair of odd- and even-order wave singularities. 

3. The muitipole expansion of the wave potential 

To obtain the multipole expansion of the wave potential an explicit representation is 
needed for the regular wave-free function 0(w), appearing in (2.12). Since the domain of 
regularity D* of this function is not annular, an ordinary Laurent series in the w-plane 
cannot be used to represent it throughout D*. Nevertheless, one may always use a Texeira 
series representation (see, e.g., Whittaker and Watson [15], §7.31 or Sansone and Gerret- 
sen [16], §3.13) of the form 

0 ( w ) =  Y'~ b , ( g ( w ) ) - " ,  (3.1) 
n = 0  

where g(w) is the function mapping conformally D* onto the exterior of the unit circle. 
This representation, although completely general, is not convenient for our purpose, since 
the restrictions induced on b,'s by the free-surface condition (2.14) cannot be obtained in 
a simple manner. This difficulty may be, however, surmounted by making the change of 
variable w = f (~) ,  where f(~') is the function mapping conformally the exterior of the unit 
circle in the ~'-plane onto the domain D* in the w-plane, i.e. the inverse function of g(w). 

t2) The usual wave source and wave dipole can be easily obtained by linear combinations of Fa(w ) and F2(w ). 
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The function f ( t )  is represented by a Laurent series of the form 

f ( t )  = ~ Cll 2-l, C I ~ R, Ill > 1, 
I ~ 1  

(3.2) 

converging uniformly and absolutely in any compact subregion of Ill > 1. Furthermore, 
under additional conditions, the series (3.2) converges uniformly and absolutely on any 
region ( t ;  1 ~< Ill ~< R}, R > 1. These conditions, as well as other useful properties of the 
mapping function f ( t ) ,  are reported in Appendix II. 

Let us now introduce the notation in the l-plane (the transformed plane). A point in it 
is represented by 1 = ~2 + i~3, ~2, ~3 ~ R. The domains K, K ÷ and K*, corresponding to 
D, D ÷ and D*, respectively (Fig. 1), are defined by 

K ( K + )  = (1; 1 <Il l  < ~,~53 <0(~53 > o)}, K* = K U K + U 3 K F ,  

where 

aKF = {~'; I@21 > 1, ~3 = 0 } ,  

is the inverse image of the free surface OO F. The boundaries ~K s, aK~ and OKg', 
corresponding to OD B, OD~ and aD~, respectively, are defined by 

OKB(OK~) = {t;  Ill = 1, ~¢3 ~< 0(~J3 >~ 0)}, ~)Kff = ~)K B t..j 0K~. 

Finally, the symbol K* is used to denote the domain K* including the point at infinity, 
i.e. K* = K* U {oo}. 

Introducing the change of variable w = f ( l ) ,  l = g ( w ) ,  into (3.1) we obtain the 
following lemma, which is of essential importance for our further considerations. 

LEMMA 1: Any function O(w) that is regular in D* and satisfies the condition (2.14) may be 
represented in the form 

O(W) = 81 (g(W)) , (3.3) 

where the function Ol(t) is regular in K* and satisfies the condition 

Imi(dO:(~') "" df(1)O (1)) 0, d l  + l k o - ~  1 = l OKF. (3.4) 

Lemma 1 reduces the representation of the regular wave-free potential O(w) to the 
representation of a function 01(I), regular in the annular domain K* and satisfying the 
modified free-surface condition (3.4). Let us now find the general form of such a function. 
At first, we have 

B -" 1 ~ r * ,  (3.5)  Ol(1) = . l  , B. ~ C, j ,  
n=l 

(B  0 ~-Ol(OO)= O(oo) = 0). The series (3.5) converges uniformly and absolutely in any 
compact subregion of the annulus K" .  

Using now the expansions (3.2) and (3.5) we find 



{ cl +ikodf(~')}~_@ 
d~ -~ 1 BA-°  

l n + l  = ik°ClBl~-I  + ,,=1 ~-" - n B . +  ik o /=IE (2 --  l)ClOn+2_,}~ -(n+l) 

Substituting (3.6) into (3.4) and setting 

B , = B ' + i B " ,  B ' , B " ~ C j ,  

we obtain 

n+l t ~oC1B;G 1 + E - n s "  + 1'o E (2 - t )c ,~ '+2_,  ~ ; ( " + ' =  o, 
n = l  l=1  

which implies 

01(~ ) with the usual 
generalized multipoles given by Wehausen [2]: 

n + l  
dS2(~') y" ~ ( 2 - l ~ r R '  /.,--(n+X, 

l ~ l U n + 2 - 1 ~  
d~" ~=1 1=1 

£o 
~ l U n + l - - l ~  

n = 2  l=1  

= -  ~ ( 2 - I ~ C B  "el I ~ )' l n~ 
n = 2  l = 1  

Integrating term-by-term and using 

s~(~)  = o~(~1 = o, 

we find 

oo ~ - -  I 1 n~ $ 2 ( ~ ' ) = -  Y'~ z., (2 I'~CB 'r2- t -"  
2 - l - n  n = 2  1=1 
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(3.6) 

14aJ > 1, 

n + l  

8~ = o, n s ;  = 1,o E (2 - t )c ,B~+2_, ,  n = a, 2, 3 . . . . .  (3.7) 
l = |  

Inserting the latter relations into the general expansion (3.5) we deduce 

~ .+1 l ) c S , + 2 _ , ~ _ "  
o , (~ )  = B'~-" + i~o E E ( 2 -  

n n = l  n = l  1=1 

- $1(~) + ik0S2 (~'). (3.8) 

The double series Sz(~ ) will be now rearranged in a manner revealing the connection of 
wave-free multipoles for symmetric bodies as well as with the 
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Upon substituting the above equation into (3.8) we obtain 

0,(~)= ~ d.M.(~), ~eK*, (3.9) 
n = 2  

where d.  - B" are j-complex constants, and 

M. (~') = ~-" - ik o ~ (2 - I)Ct~ 2-'-" 
2 ~ l - - - n  , n = 2 , 3  . . . .  (3.10) 

l = 1  

The functions M,(~) satisfying the free-surface condition and vanishing at infinity, are 
the generalized wave-free multipoles. These multipoles are identical with those derived by 
Wehausen ([2], p. 110), although the final expansion for F(w) obtained there, is not the 
same as the expansion derived in the present work (see Sec. 4). 

When Ox 3 is a vertical axis of symmetry of 0D B, then C2t = 0, 1 = 0, 1, 2 . . . . .  and the 
subsequences 

M2,(~. ) = ~.-2, _ ik ° ~ (3 - 21)C2,_1~ 3-2'-2" 
3 - 2l - 2n 

I=1  

and 

OO D 
] 2 / - l a  M2 .+ , ( f )= f_ (2 .+ l )_ iko}-~ .  (3 21"~C r2-2 ' -2"  

2 - 2 l -  2n 
/ = 1  

of the generalized wave-free multipoles coincide with the usual symmetric and antisym- 
metric wave-free multipoles, respectively. 

Using the representation (3.9), in conjunction with the decomposition theorem, we 
arrive at 

THE EXPANSION THEOREM: Suppose that the function F(w) satisfies the conditions (2.7), 
(2.8), (2.10) and (2.11). Then, it may be expanded in the form 

F(w)=Be- ikow+ s1Fl(w)+S2F2(w)+ ~ dnMn(~) , w E D ,  
n = 2  

(3.11) 

where B, $1, S z, Fl(W ) and Fz(w ) are defined as in the decomposition theorem, d, are 
j-complex constants, M, ( ~ ) are the wave-free multipoles defined by (3.10), ~" = g(w) = f - l ( w ) ,  
and f ( f )  is the function mapping conformally K* onto D*. 

The series in (3.11) converges uniformly and absolutely in any compact subregion of 
K*  and may be differentiated term-by-term any number of times there. 

The asymptotic form of the wave potential at 0D~ may be now easily obtained. From 
(3.11) it follows that F(w) can be written in the form 

F(w)= F=(w) + F.(w), (3.12) 

where 

Foo(w)=B+e -ik°w, B + E C i j ,  w E D ,  x2----~__oo , (3.13) 
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B + = B ,  B - = B - 2 ~ r i S  1 + 2 ~ k 0 S 2 ,  (3.14) 

and 

-42 A3 
I F R ( W ) I % < i ~ - i ,  IFR(W)lc,<lx3---i, A z , A 3 > 0 ,  wED. (3.15) 

F r o m  (3.13) it is found, by s t raightforward algebraic manipulat ions,  that  the j -complex  
ampl i tude  qffx) of  the wave potential  has the following asymptot ic  form at 0D~: 

q,(X)=qG(X)+qaR(X), xED, (3.16) 

< ( x ) = g e k ° X 3 {  h +  e-J(k°x2+at'+hf- eJ(k°*2+a2'~J' x2"+-+m' (3.17) 

< A 2  -43 
Iq, R(X)l  t x 2 1  and ICR(x)l<]~, xED. (3.18) 

In  the equat ion (3.17), h + , h + are four positive constants  representing the ampli tudes  of  
four  simple progressive waves at 0Do~, and 3 + , 3 + are four real constants  expressing the 
phase  lags between these waves *. (Actually one of these constants  is redundant  but  we 
shall not dwell on this point  here.) The eight a forement ioned  constants  are expressed in 
terms of B -+ = B~R + jBf f l  -4- i B ~  + i jB~ by means  of relations 

h~ =-~g{(O~R-B + +)2+(B~l+B~R)2}l/2 ' tan 8).  - Br~I + B ~  (3.19a) 
BI~ - B~R'  

h ~  6) + + ) 2 + ( B ~ I _  j:~± ]2~ 1/2 
= ~ g  {(BI~j~ q- BII  --IR] J ' tan 8 ~  - Bff+~ - B ~  . (3 .19b) 

On the basis of  (3.17), it is deduced that at either x 2 ~ + oo or x 2 - ' ~  - -  OO, the wave 
potent ia l  m a y  behave as: (i) a simple progressive outgoing wave, or (ii) a simple 
progressive incoming wave, a n d / o r  (iii) a simple s ta t ionary wave (cf. N e w m a n  [17] and 
Gu4vel  et al. [18]). In  this connect ion it is worthwhile to notice that  the a priori  use of a 
radia t ion condit ion eliminates the possibilities (ii) and (iii). 

Let  us now examine more  closely the fo rm the expansion takes in the special case of  a 
radia t ion problem,  which is characterized by 

h 2  = h2~ = O. (3.20) 

In  virtue of  (3.19) it is easily seen that  (3.20) is equivalent  to 

B-+ = A+-(1-T-ij), A+ e Cj ,  (3.21) 

f rom which, in conjunct ion with (3.14), we find 

B = A + ( I _ i j ) ,  S = - J ( A + + A - )  A - - A  + 
27r , S 2 2rrk ° (3.22) 

* The arrows in h's and 3's indicate the direction of the waves. 
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The expansion (3.11) takes then the form 

F(w)=A+G+(w)+A-G-(w)+ ~ d,,M.(~), 
n = 2  

(3.23) 

where A ± and d n are j-complex constants and 

G+(w)=(l_ij)e_ikow_..~F](w) - 1 2--~ooF2(w), (3.24a) 

t-(w) = %gJ rl(W) + 2-- 0 F2(w). (3.24b) 

The coefficients A ± and d n in the expansion (3.23) have to be determined through the 
body boundary condition (2.9). It is convenient to rewrite this condition in terms of the 
transformed variable ~: 

dF(~')/d~" } = u,,(O), ~ e i°, 
Re i -~" idf(~.)/d~.[ = -~r ~< 0 ~< 0, (3.25) 

where F(~') and un(O ) stand for F(f(~)) and un(f(ei°)), respectively. It should be noted 
that df(ei°)/d~ exists and is different from zero provided that 0D~ is of class ~2 (see 
Appendix II). Substituting (3.23) into (3.25) and differentiating term-by-term we obtain 

Re i A + H + ( ~ ) + A - H - ( ~ ) +  ~_, nd,, ~'-n+ ik° (2 - l )C t~  2-t-" 
n ~ 2  k n I = 1  / J  ~ '=e  i° 

= V(0) ,  -Tr ~< 0 ~< 0, (3.26) 

where H ±(~') = - ~dG ± ( f (~ ) ) / d~  and V(0) = un(O)ldf(ei°)/d~l. The termwise differ- 
entiation is justified if 

~ 1 ( 2 -  l)CiI < + oo and ~ l n d , I  < + o0. (3.27a, b) 

Relation (3.27a) is actually a smoothness condition on the body boundary; it is certainly 
satisfied when 0D~ is of class oK2. Relation (3.27b), which is, in fact, a smoothness 
condition on the wave potential, may be assumed a priori, provided that it will be checked 
a posteriori, when the solution of the problem will have been accomplished (cf. Ursell [19] 
and Athanassoulis [12]). 

However, if the left-hand side of (3.26) is interpreted in a limiting sense, as I~'1 ~ 1+,  
condition (3.27b) may be replaced by the weaker one 

~,lnd,,I 2 < + oo, (3.27c) 

which ensures the L2-convergence of the infinite series in (3.26). This viewpoint has been 
adopted by the author in [12]. 
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4. Discussion 

The derived multipole expansion may be useful either in the theoretical or in the 
numerical study of water-wave radiation and diffraction problems. 

The expansion theorem appears to be new in its general form. It is an extension of the 
corresponding theorem proved by Ursell [10] for fluid regions exterior to a semicircle. 

The only previous work known to the author dealing with the application of the 
multipole expansion method for two-dimensional floating bodies of arbitrary shape is the 
one by Wehausen [2]. Wehausen has worked in the transformed plane from the outset, 
taking firstly a representation of the wave potential in terms of an infinite series of wave 
multipoles (Eqn. 5.44, p. 107), Then, by rearranging this series, he has ended in an 
expansion (Eqn. 5.57, p. 112) similar to the present one (3.11). However, the second-order 
wave singularity and the first wave-free multipole are not included in Wehausen's 
expansion. This discrepancy may be attributed to the rearrangement of the wave-multi- 
poles infinite series. 
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Appendix I 

The algebraic and topological structure of ij-complex numbers 

As we saw in Sec. 2, it is convenient to formulate our problem with the aid of two 
non-interacting imaginary units i and j. The need of using two imaginary units is due to 
the fact that water-wave problems are dynamical problems in which the field equation is 
the one of Laplace. So, an imaginary unit j is used to simplify the time-dependence (in the 
time-harmonic case) while, at the same time, another imaginary unit i is introduced to 
transform the (x 2, x3)-plane into a complex plane, and pairs of real harmonic functions 
into single complex analytic functions. Such a formalism has been introduced in the 
context of water-wave problems many years ago (see Wehausen and Laitone [20], §11, 19, 
21) and has been used may times thenceforward. 

The simultaneous presence of the two imaginary units i and j leads to a new kind of 
numbers, called ij-complex numbers, the set of which is denoted by C ij- In the present 
appendix we shall develop in a fairly complete manner the algebraic and topological 
structure of the set C ij. Incidentally, a comparison with the superficially similar hypercom- 
plex numbers (Hamilton's quaternions) will be made. 

An element A ~ C ij may be represented by anyone of the following three forms: 

A = a + i B + j T + i j 6 ;  ij-=ji; a, fl, y , 6 ~ R ,  

A = a + i b ;  a , b ~ C j ,  

A = z + j w ;  z, w E C  i. 

(I,1) 

(m) 

(I.3) 

The representations (I.1), (I.2) and (I.3) are superficially identical with the representa- 
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tions of quaternions (see, e.g., MacLane and Birkhoff [21], p. 253, and Kostrikin [22], p. 
426). The algebraic structure of C ij is, however, essentially different from that of 
quaternions, because of the different definition of multiplication. 

The following four projection operators may be naturally introduced: 

R e i A = a ~ C j ,  I m i A - - b G C j ,  

R e j A = z ~ C i ,  I m j A - - - w ~ C i .  

Let us now define the basic notions and operations in C ~j, using the representation 
(I.3). Let A = z +jw,  A k = z k +jwk, k = 1, 2, be in Cij. Then, we define 

Equality: A I = A  2 ~ z  l = z  2 and w 1=w2; 

Addition: A 1 + A 2 = (z I + z2) + j (w 1 + WE); (I.4) 

Zero element: 0c~ ~ = 0 +j0;  

Multiplication: A 1 • A 2 = ( z l z  2 - wlw2) +j(zlw 2 + z2w 1); (1.5) 

Unit element: 1% = 1 + j0 ;  

Scalar multiplication: ?~A = ()~z) +j(?~w), ~ ~ Ci; (I.6) 

Absolute value: IAIc,j = (Izl 2 + Iwl2) 1/2. (1.7) 

The law of multiplication (1.5) is different from the law of multiplication of quatern- 
ions. In fact, if Qk = zk +Jwk, k = 1, 2, are two quaternions, their product is defined by 

QI " Q2 = ( z l z2  - waw2) +J(z,wz + ZzWl). 

The consequences of this difference will be discussed in the sequel. 
It is easy to see that the set C ij equipped with the operations of addition (I.4) and 

multiplication (1.5) becomes a commutative ring. This commutative ring does not, how- 
ever, possess the structure of a field, since there exist nonzero elements of it which do not 
have multiplicative inverses. With regard to this point we state the following two 
propositions. 

PROPOSITION 1: The multiplicative inverse o f  the i j -complex number  A = z + j w  exists and  is 

uniquely defined by 

A_ 1 z + j (  _w ) 
Z 2 + W 2 Z 2 + W 2 ' 

provided that z 2 + w 2 4: O. The set J o f  noninvertible elements has the f o rm  

J =  (B ;  S =  ( + i + j ) w ,  w e C i )  

and forms  a proper ideal in C ij. 

PROPOSITION 2: The numbers A 1 = ( + i  +j)w,  A z = (-T-i +j)w,  w ~ Ci, are zero divisors in 
C ij, i.e. their product  equals to zero though both being different f rom zero. 
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We can now explain the essential algebraic difference between the ij-complex numbers 
and the quaternions. The former constitute a commutative ring in which there exist 
nonzero, noninvertible elements and zero divisors; the latter form a noncommutative ring 
in which all nonzero elements are invertible. 

The existence of noninvertible ij-complex numbers does not affect our treatment in the 
present work, since it is not needed to divide by a general ij-complex number. 

The set C~j equipped with the operations of addition, multiplication and scalar 
multiplication, and with the norm (I.7), becomes a commutative Banach algebra over the 
field of i-complex numbers. Various algebraic and topological consequences of this fact 
can be found in standard treatises on the subject, e.g. in the book by Gaal [23]. 

Appendix II 

On the mapping function f(~) 

In this appendix we collect, in the form of a theorem, all properties of the mapping 
function f (~)  which have been used in the present work. 

THEOREM: Let the boundary 8D~ be a rectifiable closed Jordan curve, i.e. a simple, 
continuous, closed curve with finite length. Then the following statements are true: 

( i) There exists a function f(~) ,  analytic in K*  and with a simple pole at infinity, mapping 
con formally the domain K*  onto the domain D*. (This is a special case of the Riemann 
mapping theorem). 

( ii) Under the additional condition df(oo)/d~" > 0, f(~') is uniquely determined. 
( iii) The function f (~)  can be extended onto the boundary 8K~, establishing a one-to-one 

and bicontinuous correspondence between the points of 8 K ~ and 8 D ~ ( Osgood- Caratheodory' s 
theorem). 

(iv) The function f (~)  has a Laurent expansion 

f ( t ) =  ~_~ Ctt 2- ' ,  C , > O ,  
/ = 1  

which converges absolutely and uniformly on the set K O 8K a. Moreover, 

~ l C ,  I < + oo. 

I f  8D~ is symmetric with respect to the real axis, all C l's are real. 
Suppose, in addition, that 3D~ is of class ~2, i.e. it is smooth and its tangent vector is 

continuously differentiable. Then also the following holds: 
(v)  The mapping function f (~)  can be extended as a differentiable function onto the 

boundary 3K~. Moreover, its derivative df(~ ' ) /d~ does not vanish on 3K~ (Kellogg's 
theorem), and the coefficients C t satisfy the relation 

~ 1 ( 2 -  I ) G I <  +oo.  

The proofs of the propositions collected in the above theorem may be found in various 
treatises concerning the theory of complex functions and conformal mapping. See, e.g., 
Markushevich [24], ch. 1 and 2, Hille [25], ch. 17, and Tsuji [26], ch. IX, §3, for the proof 
of Kellogg's theorem. 
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